LOYOLA COLLEGE (AUTONOMOUS) CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

PMT 2502 - MEASURE THEORY AND INTEGRATION

Date: 26-04-2025	Dept. No.	Max. : 100 Marks
Time: 01:00 PM - 04:00 PM		

SECTION A

Answer ANY FOUR of the following

 $4 \times 10 = 40 \text{ Marks}$

- 1. Find the Lebesgue outer measure of an interval.
- 2. For set *E*, demonstrate the equivalence of the following statements:
 - (i) E is measurable.
 - (ii) For all $\epsilon > 0$, there exists an open set, $0 \supseteq E$ such that $m^*(0 E) \le \epsilon$.
 - (iii) There exists G, a G_{δ} -set, $G \supseteq E$ such that $m^*(G E) = 0$.
 - (iv) For all $\epsilon > 0$, there exists a closed set, $F \subseteq E$ such that $m^*(E F) \le \epsilon$.
 - (v) There exists a F_{σ} -set $F, F \subseteq E$ such that $m^*(E F) = 0$.
- 3. Evaluate $\int_0^1 \frac{x^{1/3}}{1-x} \log\left(\frac{1}{x}\right) dx$.
- 4. If f is Riemann integrable and bounded over the finite interval [a, b], show that the function f is Lebesgue integrable on [a, b] and explain why the following equality holds:

$$\mathcal{R} \int_{a}^{b} f dx = \int_{a}^{b} f dx.$$

- 5. Given that μ is a σ finite measure on a ring \mathcal{R} , analyze the process through which μ can be extended to the σ ring $\mathcal{S}(\mathcal{R})$. Additionally, discuss why this extension of μ to $\mathcal{S}(\mathcal{R})$ is unique.
- 6. Present Minkowski's inequality and discuss its proof.
- 7. Let $\{f_n\}$ be a sequence of non-negative measurable functions such that $|f_n| < g$, g is an integrable function and $f_n \stackrel{m}{\to} f$ where f is measurable. Prove the following:
 - (i) f is integrable.
 - (ii) $\lim \int f_n d\mu = \int f d\mu$.
 - (iii) $\lim \int |f_n f| d\mu = 0$.
- 8. State Hahn decomposition for signed measure ν defined on a measurable space [X, S] and prove. Is the Hahn decomposition unique? Justify your answer.

SECTION B

Answer ANY THREE of the following

 $3 \times 20 = 60 \text{ Marks}$

- 9. Prove that the class of Lebesgue measurable sets is a σ -algebra.
- 10. Does a non-measurable set exist? Explain your reasoning.
- 11. State Fatou's Lemma and write the proof. Additionally, provide an example where strict inequality occurs in Fatou's Lemma.
- 12. Consider a measure μ on a $\sigma ring \mathcal{S}$ and a set $\bar{\mathcal{S}}$ is defined as a collection of sets of the form $E \Delta N$, $E \in \mathcal{S}$ and $N \subseteq M \in \mathcal{S}$ with $\mu(M) = 0$. Explain why $\bar{\mathcal{S}}$ forms a $\sigma ring$. Consider a set function $\bar{\mu}$ on $\bar{\mathcal{S}}$ by $\bar{\mu}(E \Delta N) = \mu(E)$ and discuss why $\bar{\mu}$ is a complete measure on $\bar{\mathcal{S}}$.
- 13. (a) Show that every convex function defined on an open interval is continuous.
 - (b) Let $[\![X,S,\mu]\!]$ be a measure space with $\mu(X)=1$ and ψ is convex function on (a,b) where $-\infty < a < b < \infty$. Consider a measurable function f such that a < f(x) < b, for all x. Prove the inequality $\psi(\int f d\mu) \le \int \psi \circ f d\mu$. Also, identify the condition for equality to hold in this inequality and prove it. (8+12)
- 14. Write the statement of the Radon-Nikodym theorem and provide its proof.

####